p-group, metabelian, nilpotent (class 3), monomial, rational
Aliases: C2≀C22, C23⋊D4, C24⋊1C22, C23.3C23, 2+ 1+4⋊2C2, (C2×C4)⋊D4, C23⋊C4⋊3C2, C22≀C2⋊1C2, C2.18C22≀C2, C22⋊C4⋊1C22, (C2×D4).9C22, C22.16(C2×D4), 2-Sylow(A8), Hol(C2×C4), SmallGroup(64,138)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2≀C22
G = < a,b,c,d,e | a2=b2=c2=d4=e2=1, ab=ba, ac=ca, dad-1=eae=abc, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 225 in 99 conjugacy classes, 27 normal (6 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C22⋊C4, C22⋊C4, C2×D4, C2×D4, C4○D4, C24, C23⋊C4, C22≀C2, 2+ 1+4, C2≀C22
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, C2≀C22
Character table of C2≀C22
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ16 | 4 | -4 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2)(3 5)(4 8)(6 7)
(1 3)(2 5)(4 7)(6 8)
(1 6)(2 7)(3 8)(4 5)
(1 2 3 4)(5 6 7 8)
(2 4)(5 7)
G:=sub<Sym(8)| (1,2)(3,5)(4,8)(6,7), (1,3)(2,5)(4,7)(6,8), (1,6)(2,7)(3,8)(4,5), (1,2,3,4)(5,6,7,8), (2,4)(5,7)>;
G:=Group( (1,2)(3,5)(4,8)(6,7), (1,3)(2,5)(4,7)(6,8), (1,6)(2,7)(3,8)(4,5), (1,2,3,4)(5,6,7,8), (2,4)(5,7) );
G=PermutationGroup([[(1,2),(3,5),(4,8),(6,7)], [(1,3),(2,5),(4,7),(6,8)], [(1,6),(2,7),(3,8),(4,5)], [(1,2,3,4),(5,6,7,8)], [(2,4),(5,7)]])
G:=TransitiveGroup(8,29);
(1 6)(2 5)(3 7)(4 8)
(2 3)(5 7)
(1 4)(2 3)(5 7)(6 8)
(1 2)(3 4)(5 6 7 8)
(6 8)
G:=sub<Sym(8)| (1,6)(2,5)(3,7)(4,8), (2,3)(5,7), (1,4)(2,3)(5,7)(6,8), (1,2)(3,4)(5,6,7,8), (6,8)>;
G:=Group( (1,6)(2,5)(3,7)(4,8), (2,3)(5,7), (1,4)(2,3)(5,7)(6,8), (1,2)(3,4)(5,6,7,8), (6,8) );
G=PermutationGroup([[(1,6),(2,5),(3,7),(4,8)], [(2,3),(5,7)], [(1,4),(2,3),(5,7),(6,8)], [(1,2),(3,4),(5,6,7,8)], [(6,8)]])
G:=TransitiveGroup(8,31);
(1 14)(2 15)(3 13)(4 16)(5 12)(6 9)(7 10)(8 11)
(1 4)(5 7)(10 12)(14 16)
(1 4)(2 3)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 5)(2 6)(3 8)(4 7)(9 13)(10 16)(11 15)(12 14)
G:=sub<Sym(16)| (1,14)(2,15)(3,13)(4,16)(5,12)(6,9)(7,10)(8,11), (1,4)(5,7)(10,12)(14,16), (1,4)(2,3)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,5)(2,6)(3,8)(4,7)(9,13)(10,16)(11,15)(12,14)>;
G:=Group( (1,14)(2,15)(3,13)(4,16)(5,12)(6,9)(7,10)(8,11), (1,4)(5,7)(10,12)(14,16), (1,4)(2,3)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,5)(2,6)(3,8)(4,7)(9,13)(10,16)(11,15)(12,14) );
G=PermutationGroup([[(1,14),(2,15),(3,13),(4,16),(5,12),(6,9),(7,10),(8,11)], [(1,4),(5,7),(10,12),(14,16)], [(1,4),(2,3),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,5),(2,6),(3,8),(4,7),(9,13),(10,16),(11,15),(12,14)]])
G:=TransitiveGroup(16,127);
(1 7)(2 14)(3 13)(4 8)(5 9)(6 12)(10 16)(11 15)
(1 9)(2 4)(3 11)(5 7)(6 16)(8 14)(10 12)(13 15)
(1 11)(2 12)(3 9)(4 10)(5 13)(6 14)(7 15)(8 16)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(2 4)(5 15)(6 14)(7 13)(8 16)(10 12)
G:=sub<Sym(16)| (1,7)(2,14)(3,13)(4,8)(5,9)(6,12)(10,16)(11,15), (1,9)(2,4)(3,11)(5,7)(6,16)(8,14)(10,12)(13,15), (1,11)(2,12)(3,9)(4,10)(5,13)(6,14)(7,15)(8,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (2,4)(5,15)(6,14)(7,13)(8,16)(10,12)>;
G:=Group( (1,7)(2,14)(3,13)(4,8)(5,9)(6,12)(10,16)(11,15), (1,9)(2,4)(3,11)(5,7)(6,16)(8,14)(10,12)(13,15), (1,11)(2,12)(3,9)(4,10)(5,13)(6,14)(7,15)(8,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (2,4)(5,15)(6,14)(7,13)(8,16)(10,12) );
G=PermutationGroup([[(1,7),(2,14),(3,13),(4,8),(5,9),(6,12),(10,16),(11,15)], [(1,9),(2,4),(3,11),(5,7),(6,16),(8,14),(10,12),(13,15)], [(1,11),(2,12),(3,9),(4,10),(5,13),(6,14),(7,15),(8,16)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(2,4),(5,15),(6,14),(7,13),(8,16),(10,12)]])
G:=TransitiveGroup(16,128);
(1 11)(2 12)(3 6)(4 7)(5 16)(8 15)(9 13)(10 14)
(1 15)(3 13)(6 9)(8 11)
(1 15)(2 16)(3 13)(4 14)(5 12)(6 9)(7 10)(8 11)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 11)(2 10)(3 9)(4 12)(5 14)(6 13)(7 16)(8 15)
G:=sub<Sym(16)| (1,11)(2,12)(3,6)(4,7)(5,16)(8,15)(9,13)(10,14), (1,15)(3,13)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,11)(2,10)(3,9)(4,12)(5,14)(6,13)(7,16)(8,15)>;
G:=Group( (1,11)(2,12)(3,6)(4,7)(5,16)(8,15)(9,13)(10,14), (1,15)(3,13)(6,9)(8,11), (1,15)(2,16)(3,13)(4,14)(5,12)(6,9)(7,10)(8,11), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,11)(2,10)(3,9)(4,12)(5,14)(6,13)(7,16)(8,15) );
G=PermutationGroup([[(1,11),(2,12),(3,6),(4,7),(5,16),(8,15),(9,13),(10,14)], [(1,15),(3,13),(6,9),(8,11)], [(1,15),(2,16),(3,13),(4,14),(5,12),(6,9),(7,10),(8,11)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,11),(2,10),(3,9),(4,12),(5,14),(6,13),(7,16),(8,15)]])
G:=TransitiveGroup(16,129);
(2 8)(3 13)(4 11)(5 10)(6 14)(9 16)
(1 12)(2 8)(3 10)(4 6)(5 13)(7 15)(9 16)(11 14)
(1 15)(2 16)(3 13)(4 14)(5 10)(6 11)(7 12)(8 9)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 4)(2 3)(5 9)(6 12)(7 11)(8 10)(13 16)(14 15)
G:=sub<Sym(16)| (2,8)(3,13)(4,11)(5,10)(6,14)(9,16), (1,12)(2,8)(3,10)(4,6)(5,13)(7,15)(9,16)(11,14), (1,15)(2,16)(3,13)(4,14)(5,10)(6,11)(7,12)(8,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,9)(6,12)(7,11)(8,10)(13,16)(14,15)>;
G:=Group( (2,8)(3,13)(4,11)(5,10)(6,14)(9,16), (1,12)(2,8)(3,10)(4,6)(5,13)(7,15)(9,16)(11,14), (1,15)(2,16)(3,13)(4,14)(5,10)(6,11)(7,12)(8,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,4)(2,3)(5,9)(6,12)(7,11)(8,10)(13,16)(14,15) );
G=PermutationGroup([[(2,8),(3,13),(4,11),(5,10),(6,14),(9,16)], [(1,12),(2,8),(3,10),(4,6),(5,13),(7,15),(9,16),(11,14)], [(1,15),(2,16),(3,13),(4,14),(5,10),(6,11),(7,12),(8,9)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,4),(2,3),(5,9),(6,12),(7,11),(8,10),(13,16),(14,15)]])
G:=TransitiveGroup(16,147);
(1 8)(2 7)(3 13)(4 16)(5 10)(6 9)(11 15)(12 14)
(1 3)(2 10)(4 12)(5 7)(6 15)(8 13)(9 11)(14 16)
(1 11)(2 12)(3 9)(4 10)(5 16)(6 13)(7 14)(8 15)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 11)(2 10)(3 9)(4 12)(5 16)(6 15)(7 14)(8 13)
G:=sub<Sym(16)| (1,8)(2,7)(3,13)(4,16)(5,10)(6,9)(11,15)(12,14), (1,3)(2,10)(4,12)(5,7)(6,15)(8,13)(9,11)(14,16), (1,11)(2,12)(3,9)(4,10)(5,16)(6,13)(7,14)(8,15), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,11)(2,10)(3,9)(4,12)(5,16)(6,15)(7,14)(8,13)>;
G:=Group( (1,8)(2,7)(3,13)(4,16)(5,10)(6,9)(11,15)(12,14), (1,3)(2,10)(4,12)(5,7)(6,15)(8,13)(9,11)(14,16), (1,11)(2,12)(3,9)(4,10)(5,16)(6,13)(7,14)(8,15), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,11)(2,10)(3,9)(4,12)(5,16)(6,15)(7,14)(8,13) );
G=PermutationGroup([[(1,8),(2,7),(3,13),(4,16),(5,10),(6,9),(11,15),(12,14)], [(1,3),(2,10),(4,12),(5,7),(6,15),(8,13),(9,11),(14,16)], [(1,11),(2,12),(3,9),(4,10),(5,16),(6,13),(7,14),(8,15)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,11),(2,10),(3,9),(4,12),(5,16),(6,15),(7,14),(8,13)]])
G:=TransitiveGroup(16,149);
(1 14)(2 10)(3 12)(4 16)(5 11)(6 13)(7 15)(8 9)
(1 5)(2 7)(3 6)(4 8)(9 16)(10 15)(11 14)(12 13)
(1 4)(2 3)(5 8)(6 7)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 2)(3 4)(5 7)(6 8)(9 10)(11 12)(13 14)(15 16)
G:=sub<Sym(16)| (1,14)(2,10)(3,12)(4,16)(5,11)(6,13)(7,15)(8,9), (1,5)(2,7)(3,6)(4,8)(9,16)(10,15)(11,14)(12,13), (1,4)(2,3)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,2)(3,4)(5,7)(6,8)(9,10)(11,12)(13,14)(15,16)>;
G:=Group( (1,14)(2,10)(3,12)(4,16)(5,11)(6,13)(7,15)(8,9), (1,5)(2,7)(3,6)(4,8)(9,16)(10,15)(11,14)(12,13), (1,4)(2,3)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,2)(3,4)(5,7)(6,8)(9,10)(11,12)(13,14)(15,16) );
G=PermutationGroup([[(1,14),(2,10),(3,12),(4,16),(5,11),(6,13),(7,15),(8,9)], [(1,5),(2,7),(3,6),(4,8),(9,16),(10,15),(11,14),(12,13)], [(1,4),(2,3),(5,8),(6,7),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,2),(3,4),(5,7),(6,8),(9,10),(11,12),(13,14),(15,16)]])
G:=TransitiveGroup(16,150);
C2≀C22 is a maximal subgroup of
C2≀A4 C23⋊S4
C24⋊D2p: D4≀C2 C42⋊5D4 C24⋊C23 C24⋊6D6 C24⋊D6 C24⋊2D10 C24⋊D14 ...
(C22×C2p)⋊D4: C42⋊4D4 C42⋊6D4 C23.7C24 C23.9C24 C23⋊D12 2+ 1+4⋊7S3 C23⋊D20 2+ 1+4⋊2D5 ...
C2≀C22 is a maximal quotient of
C23⋊SD16 C4⋊C4.D4 (C2×C4)⋊D8 (C2×C4)⋊SD16 C24.9D4 C23⋊2SD16 C23⋊Q16 C4⋊C4.6D4 Q8⋊D4⋊C2 (C2×C4)⋊Q16 C24.12D4 2+ 1+4⋊2C4 C24.22D4 C24⋊2Q8 C24.33D4 C24.182C23 C42.13D4 C42.14D4 C42.15D4 C42.16D4 C42.17D4 Q8≀C2
C23⋊D4p: C23⋊D8 C23⋊D12 C23⋊D20 C23⋊D28 ...
C24⋊D2p: C24⋊D4 D4≀C2 C42⋊5D4 C24⋊6D6 C24⋊2D10 C24⋊D14 ...
(C22×C2p)⋊D4: C25.C22 C42⋊4D4 C42⋊6D4 2+ 1+4⋊7S3 2+ 1+4⋊2D5 2+ 1+4⋊2D7 ...
action | f(x) | Disc(f) |
---|---|---|
8T29 | x8-x6+x2+1 | 214·74 |
8T31 | x8-4x7-4x6+18x5+8x4-20x3-3x2+6x-1 | 212·54·761 |
Matrix representation of C2≀C22 ►in GL4(ℤ) generated by
1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,Integers())| [1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,-1],[-1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,1],[-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1],[0,0,1,0,0,0,0,1,0,1,0,0,1,0,0,0],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0] >;
C2≀C22 in GAP, Magma, Sage, TeX
C_2\wr C_2^2
% in TeX
G:=Group("C2wrC2^2");
// GroupNames label
G:=SmallGroup(64,138);
// by ID
G=gap.SmallGroup(64,138);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,362,255,730]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e=a*b*c,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export